

GLONASS: Current status and perspectives

3rd ALLSAT Open conference Hannover, June 22, 2006

Vyacheslav DVORKIN, Sergey KARUTIN
Russian Institute of Space Device Engineering
53, Aviamotornaya str, Moscow 111250 Russia
sergey.karutin@rniikp.ru
www.rniikp.ru

Content

State Policy principles

□ GLONASS current status

GLONASS modernization plans

GLONASS augmentations

State policy principles

- No direct user fees exist for the GLONASS service
- Open access is guaranteed to the GLONASS signal structure for user equipment and applications development
- Application of combined GLONASS/GPS receivers is promoted within Russian territory
- Compatibility and interoperability of GLONASS with GPS and future GALILEO has to be maintained
- GLONASS involvement in the GNSS global markets is a target

State policy juristic fundamentals

- President Resolution, 1999
- Government Resolution, 1999
- Federal Program «Global Navigation System» (GLONASS program), 2001
- Concept of Russian Federation united position navigation and time system, 2004

GLONASS is a basement of united position navigation and time service

Basic topics of federal GLONASS program

- GLONASS system maintenance and development
 - Minimum constellation size (18 satellites) 2007
 - Full constellation (24 satellites) 2009
- Development and production of the GNSS user equipment for all applications
 - Combined GNSS receivers
 - Integrated systems based on GNSS technology
 - Receiver components creation
- Navigation technology integration into transport infrastructure
- Geodetic reference frames modernization

Federal GLONASS Programme is directly funded from the Federal Budget with annual corrections

Content

State Policy principles

GLONASS current status

GLONASS modernization plans

GLONASS augmentations

Constellation status

15 satellites on orbit

- 11 SV «GLONASS» (3 yrs life-time):
- 4 SV «GLONASS-M» (7 yrs life-time)
 - 2 operational
 - 2 undergo flight test

Blok 35 Lunch 2006

Constellation history and perspectives

GLONASS deployment milestones:

- 18 satellites in constellation 2007
- 24 satellites in constellation 2009

Content

State Policy principles

GLONASS current status

GLONASS modernization plans

GLONASS augmentations

GLONASS modernization plans

 Modernization of on-board major components, including payload

Navigationsignalsmodernization

Upgrade GLONASS ground segment

Satellite equipment modernization plans

New signals additional transmitters development

Intersatellite link creation

Navigation message self-descriptiveness increasing

Navigation signals

GLONASS signals modernization

GLONASS control segment modernization

Modernization program

- One-way measurement and ephemeris computation stations network development
- One-way measurement stations network creation
- Two-way measurement stations deployment
- Communication channels modernization

Navigation accuracy

	2007	2008	2009	2010	2011
Ephemeris and clock accuracy (σ)					
along track, m	5	3,5	1,5	1,2	1
eross track, m	5	3,5	\setminus 1	0,8	0,5
radius, m	1	0,5	0.3	0,25	0,25
synchronization, na	6	4	3	2	2
Positioning accuracy (o)					
horizontal, m	. 3	3	3	2	1.5
vertical, m	. 7	5	5	4	2
Positioning error (3a), m 10 10 20 2007 2008 2008		2010	2011		

Content

State Policy principles

GLONASS current status

GLONASS modernization plans

□ GLONASS augmentations

GLONASS augmentations

- Russian wide-area differential subsystem
- GLONASS/GPS integrity monitoring subsystem
- Regional differential subsystems

Russian system for differential correction and monitoring (SDCM)

SDCM goals

Based on GLONASS/GPS signals:

- 1) Provide «meter level» of position determination accuracy in real time
 - horizontal: 1.0 1.5 m
 - vertical: 2.0 3.0 m
- 2) Provide «centimeter level» of position determination in real time (with ground stations support)
 - horizontal: 1 2 cm
 - по vertical: 4 6 cm
- 3) Making operative integrity monitoring
- 4) Making a posteriori integrity monitoring

SDCM architecture

Data gathering points in Russia (as of 2006):

1 – Moscow; 2 – Pulkovo (S.Petersburg); 3 – Kislovodsk; 4 – Norilsk; 5 – Irkutsk; 6 – Petropavlovsk; 7 – Khabarovsk; 8 – Novosibirsk

SDCM development plans

Data gathering network development
 2007 - 2008

 Satellite transponder design and manufacturing 2008

Ground uplink station creation

2008

System flight test

2009-2010

Data collection network development program

Existing station (end 2005):

- 1 Moscow; 2 Pulkovo (S.Petersburg); 3 Kislovodsk; 4 Norilsk; 5 Irkutsk;
- 6 Petropavlovsk; 7 Khabarovsk; 8 Novosibirsk

Data gathering point (future):

9 – Tiksi; 10 – Bilibino; 11 – Magadan; 12 – Yugno-Sahalinsk; 13 – Yakutsk; 14 – Vladivostok; 15-Ekaterinburg; 16- Lovozero; 17 – Voroneg; 18 – Anapa; 19 – Pecheri.

Thank you for attention!

GLONASS modernization plans

- Retrofitting ground segment
- Modernization of the GLONASS time keeping system.
- Improving ground measurement processing techniques to achieve better ephemeris and clock accuracy based on combination of one-way and two-way measurement
- Improving stability of onboard satellite clock
- Improving Geodetic Reference Frame PZ-90 to agree it with ITRF
- Introduction of the third civil signal in L3 starting with GLONASS-K in 2008
- Providing GLONASS with Search and Rescue capability (starting with GLONASS-K) in a way similar to COSPAS-SARSAT

Basic Improvements in GLONASS-M Compared with GLONASS Spacecraft

(Details: GLONASS Interface Control Document (ICD), version 5, 2002)

- L2 signal is modulated with civil code
- Better onboard frequency standard (1×10^{-13} vs. 3×10^{-13})
- Extra parameters are added into navigation message:
 - Accuracy factor (URA analog), temporarily set to "not monitored"
 - B1,B2 coefficients for calculating UT1
 - KP sing of coming "leap" second
 - N4 sequential number of 4-year interval starting with 1996
 - N_T day sequential number within 4-year interval
 - $\Delta \tau_n$ onboard L1/L2 signal delay difference
 - $\Delta \tau_{GPS}$ GPS/GLONASS time offset